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Abstract

We have computed stability limits for Kelvin–Helmholtz instability of superposed gas–liquid flow,
comparing theories of others. The theories are compared with literature data on air–water flow and with
new data from a 0.0508 m i.d. flow loop at PDSVA-Intevep, using a 0.480 Pa s oil and air.
� 2002 Published by Elsevier Science Ltd.
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1. Introduction

In this paper we compute and compare results from different theories of the Kelvin–Helmholtz
(KH) instability of stratified gas–liquid flow with each other, to old data for water–air, and to new
data, presented here on heavy oil (0.480 Pa s). The paper is organized as a survey, not done before,
but it contains many new results. The theories discussed here are due to Jeffreys (1925, 1926),
Taitel and Dukler (1976), Lin and Hanratty (1986), Barnea and Taitel (1993) and Funada and
Joseph (2001). The theories make different assumptions and the predicted stability limits differ
widely. The identification and comparison of theoretical assumptions with each other and with
experiments forms a better basis for evaluating theories than was previously available.
The new data on gas–heavy oil transitions taken in our 0.0508 m i.d. flow loop at PDVSA-

Intevep using 0.480 Pa s oil and air addresses problems of production which arise in pumping gas
and heavy oil. To select pipes, pumps, motors, etc. for heavy oil reservoirs, traditional correlations
of pressure gradient are used. These correlations were developed using fluids with viscosities

International Journal of Multiphase Flow 28 (2002) 1249–1268
www.elsevier.com/locate/ijmulflow

*
Corresponding author. Tel.: +1-612-626-8000; fax: +1-612-626-1558.

E-mail address: joseph@aem.umn.edu (D.D. Joseph).

0301-9322/02/$ - see front matter � 2002 Published by Elsevier Science Ltd.

PII: S0301-9322(02)00034-4

mail to: joseph@aem.umn.edu


ranging from 0.001 to 0.005 Pa s. Nevertheless, even for these low viscosity liquids, errors in
pressure gradient calculations can be between 20% (Chokshi et al., 1996) and 30 (G�oomez et al.,
1999). These errors will be greater in the case of extra-heavy oils with viscosities up to 3 Pa s.
To understand gas–liquid flows, flow regimes are very important; slug flow is the predominant

flow type for gas–heavy oil flow. Many authors seek to determine the transition to slug flow as a
KH instability of stratified flow. In fact, ripples and capillary waves can arise from this instability
and the origin of slugs may, in some cases, be associated with a nonlinear transition arising as a
subcritical bifurcation as in the case of ‘‘premature slugging’’ observed by Wallis and Dobson
(1973).
In our discussion of the linear theories we looked at effects of long waves, short waves and

waves of maximum growth, calling attention to the importance of surface tension, which is often
incorrectly calculated, evaluated or unjustifiably neglected. The effects of normal stresses and
shear stresses are separately evaluated and the consequences of approximating shear stresses and
interfacial stresses using correlations are discussed.
The presentation of experimental results, which is usually carried out in the Mandhane plane of

superficial gas and liquid velocities, can be misleading because important effects of gas holdups,
calculated for data presented here, are ignored.

2. Kelvin–Helmholtz instability

The instability of uniform flow of incompressible inviscid fluids in two horizontal parallel in-
finite streams of different velocities and densities, one stream above, is better known as the KH
instability. It is usual to study this instability by linearizing the nonlinear equations around the
basic equations followed by analysis of normal modes proportional to

exp½rt þ ikz� ð1Þ
where r ¼ rr þ iri and rr is the growth rate, k is the wave number. It is also usual to assume that
the fluids are inviscid; if they were viscous the discontinuity of velocity could not persist.
Moreover, if the basic streams are assumed uniform then there are no rigorous ways to evaluate
the shear and interfacial stresses. In practice, the streams being modeled are turbulent and analytic
studies of stability must make approximations. The usual procedure adopted by many authors
whose work is reviewed later is to employ empirical correlations for evaluation of shear and
interfacial stress. The agreement with experiments achieved by this empirical approach is not
compelling.
Funada and Joseph (2001), hereafter called FJ, introduced a new approach to the viscous

problem using the theory of viscous potential flow (VPF). This theory allows one to account for
the effects of viscosity on extensional stresses activated by the normal displacement of waves while
ignoring shear stresses. No assumptions beyond those required for potential flow are invoked.
It is well known that the Navier–Stokes equations are satisfied by potential flow; the viscous

term is identically zero when the vorticity is zero but the viscous stresses are not zero (Joseph and
Liao, 1994). It is not possible to satisfy the no-slip condition at a solid boundary or the continuity
of the tangential component of velocity and shear stress at a fluid-fluid boundary when the ve-
locity is given by a potential. The viscous stresses enter into the VPF analysis of free surface
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problems through the normal stress balance at the interface. VPF analysis gives good approxi-
mations to fully viscous flows in cases where the shears from the gas flow are negligible; the
Rayleigh–Plesset bubble is a potential flow which satisfies the Navier–Stokes equations and all the
interface conditions. Joseph et al. (1999) constructed a VPF analysis of the Rayleigh–Taylor in-
stability which can scarcely be distinguished from the exact fully viscous analysis.
The analysis of KH instability using VPF leads to the following dispersion relation:

½qGðr þ ikUGÞ2 þ 2lGk
2ðr þ ikUGÞ� cothðkhGÞ þ ½qLðr þ ikULÞ2 þ 2lLk

2ðr þ ikULÞ�
� cothðkhLÞ þ ðqL � qGÞgk þ ck3 ¼ 0 ð2Þ

where U, h, l and q denote the mean velocity, holdup, viscosity and density respectively. The
subscripts G and L stand for gas and liquid. Gravity and surface tension are denoted by g and c,
respectively.
Neutral curves which define the border between stability and instability are the locus of values

for which rr ¼ 0; the resulting equation may be solved for

V 2ðkÞ ¼ ½lL cothðkhLÞ þ lG cothðkhGÞ�
2

qLl
2
G cothðkhLÞ coth

2ðkhGÞ þ qGl2
L coth

2ðkhLÞ cothðkhGÞ
1

k
½ðqL � qGÞg þ ck2� ð3Þ

where V ¼ UG � UL is the relative velocity.
The lowest point on the neutral curve V 2ðkÞ is

V 2
c ¼ min

k P 0
V 2ðkÞ 	 V 2ðkcÞ; ð4Þ

where kc ¼ 2p=kc is the wave length that makes V 2 minimum. The flow is unstable when

V 2 ¼ ð�V Þ2 > V 2
c :

This criterion is symmetric with respect to V and �V , depending only on the absolute value of the
difference. This feature stems from Galilean invariance; the flow seen by the observer moving with
gas is the same as the one seen by an observer moving with the liquid.
The classical theory of KH instability of an inviscid fluid may be obtained from (2) by putting

lG ¼ lL ¼ 0. In this case (3) reduces to

V 2 ¼ tanhðkhGÞ
�

þ qG

qL

tanhðkhLÞ
�

gðqL � qGÞ
kqG

�
þ ck

qG

�
ð5Þ

Most workers, possibly starting with Kordyban and Ranov (1970), have restricted consider-
ation to long waves for which k ! 0. This assumption has been employed even by authors who
attempt to include viscosity; very important effects of surface tension are lost when k ! 0. If
k ! 0, qG � qL and UL � UG, then (5) reduces to

U 2
G ¼ ðqL � qGÞ

qG

ghG;

which is the same as

j� ¼ a3=2: ð6Þ
Here a ¼ hG=H and j� ¼ UGa

ffiffiffiffiffiffi
qG

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gHðqL � qGÞ

p
, where H is the channel height.
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3. Stability criteria from various authors

The KH linear theory has been used as a basis to determine whether a smooth stratified (SS)
flow is stable or not.
Wallis and Dobson (1973) compare their criterion with transition observations that they call

‘‘slugging’’ and note that empirically the stability limit is well described by

j� > 0:5a3=2 ð7Þ

Taitel and Dukler (1976) (TD) extended the KH analysis first to the case of a finite wave on a flat
liquid sheet in horizontal channel flow (8) and then to finite waves on stratified liquid in an in-
clined pipe (9). In order to apply this criterion they need to provide the equilibrium liquid level hL
(or liquid holdup). They compute hL through momentum balances in the gas and liquid phases
(two fluid model) in which shear stresses are considered and evaluated using conventional friction
factors definitions. In the two fluid model, the pipe geometry is taken into account through wetted
perimeters by the gas and liquid phases, including the gas–liquid interface. This implies that the
wall resistance of the liquid is similar to that for open-channel flow and that of the gas to close-
duct flow. This geometry treatment is general and could be applied not only to round pipes, but to
any possible shape. With this method, each pair of superficial gas and liquid velocity corresponds
to a unique value of hL. According to TD, a finite wave will grow in a horizontal rectangular
channel of height H, when

j� > 1

�
� hL

H

�
a3=2 ð8Þ

or

UG > 1

�
� hL

D

�
ðqL � qGÞ

qG

gAG

dAL
dhL

" #1=2

ð9Þ

for inclined pipe. D is the pipe diameter and A is the cross-section area.
Note that ð1� hL=HÞ ¼ a. If hL=H ¼ 0:5, ð1� hL=HÞ equals 0.5, and this is consistent with the

result of Wallis and Dobson (1973).
The TD overall procedure leads to a weak dependence on viscosity, through the calculation of

hL. See Barnea (1991), page 2130.
TD also identify two kinds of stratified flow: stratified smooth (SS) and stratified wavy (SW).

These waves, they say, ‘‘are caused by the gas flow under conditions where the velocity of the gas
is sufficient to cause waves to form, but slower than that needed for the rapid wave growth which
causes transition to intermittent or annular flow’’. TD propose a criterion to predict the transition
from SS to SW flow, based on Jeffreys (1925, 1926) ideas.
Jeffreys (1925, 1926) [J] proposed a linear ad hoc theory for the generation of water waves by

wind as an alternative to the inviscid KH theory. His argument that the KH theory allows ‘‘. . . no
horizontal displacement occurring across the relative velocity of the fluid . . .’’ is erroneous. He
says that ‘‘. . . the wind presses more strongly on the slopes of the waves facing it than on the
sheltered side, and it is the tendency of the waves to grow is just able to overcome the viscous
dissipation that the waves first formed’’. The pressure and the viscous dissipation are both
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computed on the potential flow. Various forms of his theory have appeared. For example, TD
wrote his criterion for instability as

UG >
4lLg
sUL

� �1=2
ð10Þ

where s, the ‘‘sheltering’’ constant, is a fitting parameter which ‘‘fits’’ their data with s ¼ 0:01.
Andritsos, Williams and Hanratty (1989) got a fit for more viscous fluids with s ¼ 0:06. Values of
s as great as 6 have been used.
Lin and Hanratty (1986) (LH) re-examine the growth of small amplitude long wavelength

disturbances. Their approach differs from classical KH linear stability theory in that liquid phase
viscous and inertia terms are included. They also take into account shear stresses at the gas–liquid
interface and the component of the pressure out of phase with the wave height. They present their
theory for channel flow, as well as pipe flow. In this case, their treatment of the pipe geometry is
similar to that used by TD. They study two cases, turbulent gas-turbulent liquid and turbulent
gas-laminar liquid. For the sake of simplicity we will cite their transition criterion only for hor-
izontal channel flow:
(a) turbulent gas–turbulent liquid

j� > Ka3=2 ð11Þ
with

1

K2
¼ 1þ a

1� a

	 
0:714 CR

uL

�
� 1

�2

1
h

þ ð1þ /Þ a
1� a

	 
i1:14 qG

qL

� �0:143 fi
fs

� �0:143 tG
tL

� �0:286

ð12Þ
where v is the kinematic viscosity and / ffi fi=fs is the ratio of the interface and surface friction
factors. Here CR=uL, and therefore K, is a function of the void fraction a, fi=fs, and fluid prop-
erties for a fully developed flow. CR is the real part of the wave velocity C.
(b) turbulent gas–laminar liquid

j� ¼ Kla
3=2; ð13Þ

with

Kl ¼ 1

"
� XZ2

ð1� aÞ3
t4G

t2LgB3

� �
BUSG

tG

� �3:5
#1=2

ð14Þ

where X is a function of CR=uL and Z is defined as follows:

Z ¼ 1

60:15

1� a
a

� �2

1

�
þ 4

3

1� a
a

� ��
qG

qL

� �
ð15Þ

For large tL, Kl ffi 1 and the stability condition reduces to (6).
Barnea and Taitel (1993) (BT) perform a long wavelength stability analysis of stratified flow on

the two fluid model equations, for round pipes. They take into account shear stresses and in-
terfacial tension (only to obtain a dispersion equation). They use friction factors to evaluate the
shear stresses, in the same way as TD, to determine the equilibrium liquid level hL. In fact, they
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follow the same procedure to determine the neutral stability line on a flow chart, including the
geometry treatment. The main difference is that they take into account shear stresses not only to
compute hL but also the critical gas velocity UG. According to their criterion transition from
stratified flow occurs when

UG > K ðqLRG

"
þ qGRLÞ

qL � qG

qLqG

� �
g

A
dAL
dhL

#1=2
: ð16Þ

Notice that when qL � qG

ðqLRG þ qGRLÞ
qL � qG

qLqG

� �
A ¼ qL � qG

qG

� �
AG;

and (16) looks almost like (9).
If K ¼ 1, Eq. (16) corresponds to what BT call the inviscid KH (IKH) approach. If K ¼ Kv,

where

Kv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðCV � CIVÞ2

qL�qG
q g A

dAL=dhL

vuut ð17Þ

then (16) corresponds to their viscous KH (VKH) approach. Here, q ¼ qL=RL þ qG=RG and the
term ðCV � CIV Þ2 takes into account the shear stresses. After BT,

‘‘. . . as the liquid viscosity increases the contribution of the term in (16) diminishes and for
high viscosity both approaches yield almost the same results. The fact that the results ob-
tained by the VKH analysis, which takes into account the shear stresses, are different from
those using the IKH approach at low viscosities, while the two approaches yield almost to
the same result at high viscosity, is indeed puzzling.’’

FJ study the stability of stratified gas–liquid flow in a horizontal rectangular channel using
VPF. Their analysis lead to an explicit dispersion relation (see Table 1) in which the effect of
surface tension and viscosity on the normal stress are not neglected but the effects of shear stresses
are neglected. The authors point out that:

‘‘The effects of surface tension are always important and actually determine the stability lim-
its for the cases in which the volume fraction of gas is not too small. The stability criterion
for VPF is expressed by a critical value of the relative velocity.’’

The neutral curve (3) of FJ gives rise to the surprising result that the viscosity and density ratios

l̂l ¼ lG

lL

and q̂q ¼ qG

qL

ð18Þ

play a critical role in KH stability despite the fact even when qG � qL and lG � lL.
When l̂l ¼ q̂q ¼ (which can be expressed as tG ¼ tL, where t ¼ l=q is the kinematic viscosity)

Eq. (18) for marginal stability is identical to the equation for neutral stability of an inviscid fluid,
even though l̂l ¼ q̂q does not mean that the fluids are inviscid. Moreover, the critical velocity is
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maximum at l̂l ¼ q̂q; hence the critical velocity is smaller for all viscous fluids such that l̂l 6¼ q̂q and
is smaller than the critical velocity for inviscid fluids. All this is well explained by the authors with
their Fig. 4 (which we reproduce here in Fig. 1). Fig. 1 shows that l̂l ¼ q̂q is a distinguished value
that can be said to divide high viscosity liquids with l̂l > q̂q from low viscosity liquids with l̂l < q̂q.
As a practical matter the stability limit of high viscosity liquids can hardly be distinguished from
others, while the critical velocity decreases sharply for low viscosity fluids.

Table 1

Dispersion equation for various authors: ARx2 þ 2ðBR þ BIÞx þ ðCR þ 2CIÞ ¼ 0

Coefficient IKH (with surface tension) Barnea and Taitel (1993) VPFHK (2000)

AR qG cothðkhGÞ þ qL cothðkhLÞ qG
1
RG

	 

þ qL

1
RL

	 

qG cothðkhGÞ þ qL cothðkhLÞ

BR �k½qgUG cothðkhGÞ
þ qLUL cothðkhLÞ�

�k qGUG
1
RG

	 

þ qLUL

1
RL

	 
h i
�k2½qGUG cothðkhGÞ
þ qLUL cothðkhLÞ�

BI 0 1
2

oF
oUL

1
RL

	 

� oF

oUG

1
RG

	 
h i
k½lG cothðkhGÞ þlL cothðkhLÞ�

CR �kðqL � qGÞg
þ k2½qGU

2
G cothðkhGÞ

þ qLU
2
L cothðkhL � k3cÞ�

�k2ðqL � qGÞg A
A0
L

cos b
	 


þ k2 qGU
2
G

1
RG

	 
h
þqLU

2
L

1
RL

	 
i
� k4c A

A0
L

	 
 �kðqL � qGÞg
þ k2½qGU

2
G cothðkhGÞ

þ qLU
2
L cothðkhL � k3cÞ�

CI 0 k 1
2

oF
oUL

UL
1
RL

	 

� oF

oUG
UG

1
RG

	 

� oF

ohL
1
A0
L

	 
h i
�k3½lGUG cothðkhGÞ
þ lLUL cothðkhLÞ�

Here F ¼ sGSG
AG

� sLSL
AL

þ siSi
1
AG

þ 1
AL

	 

� ðqL � qGÞg sinb, where sG ¼ fG

qGU2
G

2
, sL ¼ fL

qLU
2
L

2
, and si ¼ fi

qiðUG�ULÞ2
2

.

Furthermore, F ¼ F ½UG;UL; hL� ¼ F ½USGðUG; hLÞ;USLðUL; hLÞ; hL�. Note USG ¼ UGRG and USL ¼ ULRL.

Fig. 1. After Funada and Joseph (2001). Critical velocity V ¼ jUG � ULj vs. l̂l for a ¼ 0:5. The critical velocity is the

minimum value on the neutral curve. The vertical line is l̂l ¼ q̂q ¼ 0:0012 and the horizontal line at V ¼ 635:9 cm/s

(6.359 m/s), the critical value for inviscid fluids. The vertical dashed line at l̂l ¼ 0:018 is for air and water.
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The condition l̂l ¼ q̂q, may be written as

lL ¼ lG

qL

qG

ð19Þ

For air and water

lL ¼ 0:015 Pas ð20Þ

Hence lL < 0:015 Pa s is low viscosity liquid provided that qL � 1000 kg/m3.

3.1. Dispersion equations

Table 1 presents the coefficients of complex growth rate x of the dispersion equation obtained
corresponding to the classical KH analysis, as well as to BT’s and FJ’s, from which they develop
their stability criteria.
The dispersion equation can be written as

ARx2 þ 2ðBR þ BIÞx þ ðCR þ 2CIÞ ¼ 0

where x ¼ kC, and the subscripts R and I stand for real and imaginary part.
BT make some simplifications by using the derivative with respect to the superficial gas and

liquid velocities, USG and USL rather than with respect UG and UL. Therefore, BI and CI in Table 1
reduce to

BI ¼
1

2

oF
oUSL

����
USL;hL

"
� oF

oUSG

����
USL;hL

#
and CI ¼ �k

1

2

oF
oRL

����
USG;USL

;

respectively. Here F is the sum of the acting forces in the combined momentum equation of the
two fluid model. After BT’s nomenclature, R denotes the phase holdup.
In Table 1 we can see that the coefficient AR for the three models can be written as

AR ¼ qGaR1 þ qLaR2: ð21Þ

where aR1 and aR2 are function of the geometry only.
Similarly, for the coefficient BR, or

BR ¼ �k½ðqGUGÞbR1 þ ðqLULÞbR2�: ð22Þ

Again, bR1 and bR2 are function of the geometry only. Notice that the power of k is 1 for each
model. Now, if we write the coefficient CR as follows:

CR ¼ �kðqL � qGÞgcRk1 þ k2½ðqGU
2
GÞcRk2;1 þ ðqLU

2
LÞcRk2;2� � k3ccRk3; ð23Þ

we find that not all the cRkm;n coefficients coincide. Table 2 shows the details.
The coefficient cRk1 corresponds to the term that takes into account the effect of gravity. It is 1

for KH and the FJ model, but different from 1 for the BT model. In this case, geometry plays a
role through the term (A=A0

L). But the main difference is due to the presence of k. This raises the
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power of k, from 1 to 2, when the complete gravity term of CR is considered. It is important to
recall what is the exact origin of this term. In the KH and FJ cases, it comes from the body forces
in the momentum equation. In the BT model, it arises from the treatment of the pressure and not
from the body forces. Recall F does include a gravity term, which comes from the body forces.
The coefficients cRk2;1 and cRk2;2 are functions of geometry only.
Finally, the coefficient cRk3 corresponds to the term that takes into account the effect of surface

tension. It is 1 for KH and the FJ model, but different from 1 for BT, where k is present. This
raises the power of k from 3 to 4 when the complete surface tension term of CR is considered. In
KH and the FJ model, this term has an associated k raised to the third power and it comes directly
from the analysis of the surface tension condition. In the BT model the power of k is 4. It arises,
though, from a more complex analysis. They develop a combined momentum equation (two fluid
model), in which the pressure term has been manipulated as follows. They first assume that the
pressure is only hydrostatic, then they introduce the surface tension condition and finally, they
express everything in terms of the liquid holdup hL. Only then, they perturb the resulting equation.
In one last step, they differentiate it with respect to x, so they know all the involved terms. By
doing this, they raise the order of the derivative associated to the surface tension term, from 3 to 4.
This results in a fourth power for k.
We must point out that even though BT consider surface tension in their dispersion equation,

they do a long wave analysis in which surface tension is neglected to develop their stability cri-
terion.

4. Relation of experiments to theory

The study of gas–heavy oil flow is best done as an emphasis in a general study of gas–liquid
flow in which flow regime transitions, like the transition from stratified to slug flow are targets.
The most common correlation used to calculate the conditions for the transition from one flow
regime to another is Mandhane plot 24 (Mandhane et al., 1974) shown in our Fig. 2. The
Mandhane plots are framed in terms of superficial velocities USG ¼ QG=A, USL ¼ QL=A, which are
related to the mean velocities used in analysis by

Table 2

Coefficient for CR

Coefficient IKH (with surface tension) Barnea and Taitel (1993) VPFKH (2001)

cRk1 1 k A
A0
L

cos b
	 


1

cRk2;1 cothðkhGÞ
1

RG

cothðkhGÞ

cRk2;2 cothðkhLÞ
1

RL

cothðkhLÞ

cRk1 1 k A
A0
L

	 

1
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USG ¼ aUG; USL ¼ ð1� aÞUL ð24Þ

Criteria, like those arising from (3) for which the neutral curve is given by

V 2 ¼ ðUG � ULÞ2 ¼ f ðaÞ ð25Þ

should be expressed in Mandhane diagrams as

USG

a

�
� USL

1� a

�2

¼ f ðaÞ ð26Þ

To plot this kind of criterion it is necessary to know a at (USG, USL) point.
LH note that ‘‘. . . the general consensus is that this plot is most reliable for air and water

flowing in a small diameter pipe’’. They get a quite different flow chart even for air and water,
when the pipe diameter is larger as shown in Fig. 3.
The Mandhane charts cannot well describe the flow regimes that can arise in all circumstances.

The coordinates of the charts are superficial velocities, dimensional quantities that do not reflect
any consequence of similarity, Reynolds numbers, Weber numbers, etc. Mandhane charts lack
generality since each sheet requires specification of a set of relevant parameters like fluid viscosity,
surface tension, pressure level and gas density, turbulence intensity data, pipe radius, gas fraction,
etc.
Mandhane charts assume that flow regimes are unique and do not acknowledge the fact that a

nonlinear system allows multiple solutions. For example, Wallis and Dobson (1973) have shown
that apparently stable slug flow can be initiated by large disturbances in the region where stratified
flow is stable (see their section titled ‘‘Premature slugging’’). Slugs are formed in the 0.0508 m i.d.
Intevep flow loop in gas-oil (lL ¼ 0:480 Pa s) flows at small liquid velocities. These slugs are

Fig. 2. After Taitel and Dukler (1976). Comparison of theory and experiment. Water–air, 25 �C, 1Eþ 05 Pa (1 atm),

0.0254 m diameter, horizontal; –– theory; ///// Mandhane et al. (1974). Regime descriptions as in Mandhane.
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separated regions of apparently stable stratified flow with a perfectly flat free surface. The length
of stable stratified flow between slugs can be nearly the length of the flow loop. This may also be
interpreted as ‘‘premature’’ slugging though it is more appropriate to describe it as a multiple
solution; slug flow and stratified flow exist at one and the same point on the flow chart.
From the practical point of view, the existence of multiple solutions points to the desirability of

a careful analysis of domains of attraction of stable solutions. The appearance of slugs in a region
of stable stratified flow points to a careful analysis of the disturbance level at the inlet where large
waves may be created. At the end of the paper on waves Crowley et al. (1992) write that

‘‘When a new slug forms it requires additional pressure drop to accelerate it. This feeds back
to the inlet by acoustic waves in the gas (which can travel upstream) and changes the
conditions there. This new ‘‘disturbance’’ eventually grows to form a slug and the cycle re-
peats. The method of characteristics can represent this cycle, but assumptions (or a separate
mechanistic analysis) are needed about this inlet behavior.’’

It is not possible at present to predict the transition of one flow type to another. The depen-
dence of the empirical charting of flows is also incomplete; there is only sparse data on the de-
pendence of flow type on pipe radius, liquid viscosity, pressure level, atomization level, turbulent
intensity. Pressure gradients vs. volume flux, holdup of phases and other process control data are
not predictable from first principles or from empirical flowcharting.
The linear theory of stability of stratified flow also does not predict the form of the fluid motion

that will arise from instability. The theory does predict the wavelength, frequency and growth rate
of small growing disturbances. These disturbances may be attracted to a large amplitude solution
on a branch of solutions, which is stable when stratified flow is also stable. This may be the case

Fig. 3. After Lin and Hanratty (1987). Flow regime map for air and water flowing in horizontal 0.0254 and 0.0953 m

pipes. USL and USG are superficial velocities related to UL and UG by (23).
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for subcritical slugs, which arise as ‘‘premature slugging’’. In the supercritical case small ampli-
tude wavy flows are more likely to arise from the instability of stratified flow. The stability limit
should separate stable stratified flow from small amplitude wavy flow (see Fig. 8).
In studying the linear theory of instability it is necessary to consider stability to all small dis-

turbances and the restriction to long waves cannot be justified when the maximum growth rate
is associated with waves that are not long.
Rigorous analytical approaches to nonlinear effects are often framed in terms of bifurcation

theory. To do bifurcation analysis it is necessary to have an accurate description of the flow that
bifurcates. Bifurcation analyses of stratified laminar Poiseuille flow of two liquids in channels can
be found in the literature but these flows are rather different than the plug flows considered here;
they satisfy no-slip conditions at all boundaries and stress continuity conditions at the interfaces.
As far as we know this kind of analysis has not been applied to gas–liquid flows possibly because
the gas is turbulent even over much of the region where stratified flow is stable.
One value of bifurcation theory is that many of its results are generic so that aspects of non-

linear behavior apply to many different kinds of problems without knowing details of any one. In
the usual case the bifurcation of the basic flow occurs at a critical point; in the case of KH in-
stability we lose stability of plug flow when V exceeds the critical value Vc. For V > Vc the basic
flow is unstable. Generically a nonlinear solution will bifurcate at criticality; if the nonlinear
solution bifurcates with V > Vc it is supercritical and generically stable, if V < Vc it is subcritical
and generically unstable. In the case of KH instability, the basic solution is unstable to a time
periodic disturbance so that the bifurcating solutions will also be time periodic; this is called a
Hopf bifurcation (see Iooss and Joseph, 1990).
It is of interest to speculate how some outstanding experimental observations on the loss of

stability of stratified flow may be explained by bifurcation. First, we recall that Wallis and
Dobson (1973) reported very robust data on premature slugging, slugs when V < Vc. Andritsos
and Hanratty (1987) report that stratified flow loses stability to regular waves when the viscosity is
small and directly to slugs when the viscosity is large. We too observed what could be interpreted
as premature slugging.
Premature waves would be described by subcritical bifurcation as in the diagram of Fig. 4. A

supercritical bifurcation to regular waves is shown in Fig. 5. Perhaps there is a change from

Fig. 4. Bifurcation diagram for premature slugging. When stratified flow loses stability it is attracted through an

unstable subcritical branch to a large amplitude stable solution in which the wave amplitude increases with V.

1260 C. Mata et al. / International Journal of Multiphase Flow 28 (2002) 1249–1268



supercritical to subcritical bifurcation as the viscosity is increased in the experiments of Andritsos
and Hanratty (1987). Many other bifurcation scenarios are possible.

5. Experimental setup

Experiments were carried out in a 0.0508 m i.d. flow loop facility at PDVSA-Intevep. Fig. 6(a)
shows the experimental facility diagram, which consist of the following modules:

• handling and measuring for the liquid phase,
• handling and measuring for the gas phase,
• test section,
• non-conventional separation.

In the facility a maximum flow rate of liquid around 1.11E)02 m3/s and 3.89E)01 sm3/s for
compressed air at 8.62Eþ05 Pa (125 Psig) can be handled. The liquid (lube oil, 0.480 Pa s) is
pumped using a gear pump with a variable speed control. The flow rate of liquid is measured with
a flow meter (Micromotion). The air is supplied using two compressors. The flow rate is controlled
by three flow control valves and measured with an orifice plate and/or a vortex meter. Air is
injected in a ‘‘T’’ injection point where gas and oil are mixed (see Fig. 6(b)). The total length of the
test section is 64 m and is conformed by 42 m for flow region development; 17.70 m of transparent
acrylic pipe, equipped with transmitters for: pressure, temperature, differential pressure and a
high-speed video camera. Differential pressure transducers are used to measure the pressure drop
between pressure taps. After the test section, the oil–air mixture is separated in a non-conven-
tional separator. Afterwards, the liquid returns to the tank and the air is vented to the atmo-
sphere.
Air was not always injected at a ‘‘T’’ injection. At the beginning of the experiments a ‘‘Y’’

injection point was used (see Fig. 6(b)). This configuration allowed a rather chaotic mixing
process. We avoided that with a new design, which allows the gas and liquid to contact each other
in a sort of stratified configuration, as shown in Fig. 6(b). This, we think, avoids entrance per-
turbations, which could promote premature slugging.

Fig. 5. Bifurcation diagram to explain bifurcation of regular supercritical waves. The stable wave that replaces

stratified flow as V is increased may have a very small amplitude, unlike Fig. 4.

C. Mata et al. / International Journal of Multiphase Flow 28 (2002) 1249–1268 1261



6. Results

In this section we will present and compare against theory data from literature for air–water
flow in channels and data obtained at the PDVSA-Intevep 0.0508 m i.d. flow loop for air–oil
(lL ¼ 0:480 Pa s) flow.

Fig. 6. Experimental setup: (a) PDVSA-Intevep 0.0508 m i.d. flow loop and (b) details of the gas injection point.
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6.1. Gas–liquid flow in channels

Plots of j� ¼ UGa
ffiffiffiffiffiffi
qG

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gHðqL � qGÞ

p
vs. void fraction a together with the slug flow experi-

mental values for air–water flow of Wallis and Dobson (1973), and Kordyban and Ranov (1970)
are shown in Fig. 7. Here (a) shows plain linear theories such as long wave IKH, long wave VKH
from LH and all waves VPFKH from FJ. Fig. 7(b) shows heuristic adjustments of theories in (a),
obtained by multiplying the critical j� by a.
It is widely acknowledged that nonlinear effects at play in the transition from stratified to slug

flow are not well understood. The well-known criteria of TD, based on a heuristic adjustment of
the linear inviscid long wave theory for nonlinear effects, is possibly the most accurate predictor
of experiments. Their criterion replaces j� ¼ a3=2 with j� ¼ a5=2. We obtain the same heuristic
adjustment for nonlinear effects on FJ’s VPFKH, as well as LH’s approach, by multiplying
the critical value of velocity in Fig. 7(a) by a, as shown in Fig. 7(b). Models in (a) that would

Fig. 7. j� vs. a. Comparison of theory and experiments in air–water channel flow. All the data points are slug data

points by Wallis and Dobson (1973). The shaded region is from experiments by Kordyban and Ranov (1970). (a) Linear

theories, including j� ¼ a3=2, which is the long wave criterion for IKH, FJ and LH. (b) Nonlinear effects. Heuristic

adjustments of theories in (a), obtained by multiplying the critical j� by a. Notice that j� ¼ a5=2 is TD model.

C. Mata et al. / International Journal of Multiphase Flow 28 (2002) 1249–1268 1263



under-predict the data predict it very well in (b). On the other hand, the heuristic adjustment
for nonlinearity does not make a great change in the results of LH, shown in Fig. 7.

6.2. Gas–liquid flow in a 0.0508 m i.d. pipeline

Fig. 8 presents a Mandhane flow chart for PDVSA-Intevep data from a 0.0508 m i.d. flow loop
for air–oil (lL ¼ 0:480 Pa s) flow. The identified flow patterns are SS, wavy stratified (SW), slug
(SL) and annular (AN). The neutral stability criteria for stratified flow after the following authors
are also presented; [J]: –, TD: stars, BT: þ, IKH: �, FJ: broken line, FJ multiplied by a or FJ� a:
heavy line.
To evaluate all the criteria, liquid equilibrium level hL was first computed following the TD

procedure, which is described in Section 2. This is done in order to get the void fraction a, and
hence the liquid and gas superficial velocities USL and USG, respectively. This is consistent with [J]
and BT’s VKH and IKH criteria. However, the IKH stability criterion was evaluated in a new
way; we used the condition l̂l ¼ q̂q, which FJ describe as ‘‘a distinguished value that can be said to
divide high viscosity liquids with l̂l < q̂q from low viscosity liquids’’. Since TD’s procedure to
compute hL involves viscosity effects, we thought that using the l̂l ¼ q̂q, which gives lL ¼ 0:015 Pa s
for the studied system, is more coherent with an ‘‘inviscid’’ criterion than using the actual liquid
viscosity lL ¼ 0:481 Pa s. The l̂l ¼ q̂q condition was also used with the FJ and FJ� a criteria.
Fig. 8 shows that a few stable (open circles) points are above the TD neutral stability curve

(stars). It also shows that some unstable or (SW) points (open squares) are to the right of the BT
neutral stability curve (þ), which is higher and above some (SL) experimental points (solid tri-
angles). The IKH neutral curve (�) is way above the TD and BT curves. It includes in the pre-
dicted stable region most of the (SL) and (AN) experimental points (triangles and diamonds),

Fig. 8. Mandhane flow chart for PDVSA-Intevep data from 0.508 m i.d. flow loop with air and 0.480 Pa s lube oil. The

identified flow patterns are SS (open circles), SW (open square), SL (triangles) and AN (open diamonds). Stratified to

non-stratified flow transition theories after different authors are compared; [J]: �, TD: stars, BT: þ, IKH with l̂l ¼ q̂q
IKH: �, FJ: broken line, Funada and Joseph multiplied by a (2001) FJ� a: heavy line. Constant void fraction a lines

are indicated. Notice that the curves FJ and FJ� a sharply drop around USG ffi 5 m/s.
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respectively. Same thing happens with the [J] neutral stability curve (–). Evidently both [J] and
IKH criteria fail to predict the instability threshold for the studied system. The [FJ] neutral
stability curve (broken line) is very close to the IKH one for USG < 1 m/s, but drops sharply
around USG ffi 5 m/s. However, the FJ� a (heavy line) overlaps the BT one, dropping sharply
around USG ffi 5 m/s. The FJ� a stability curve was obtained multiplying V̂Vcðk̂kcÞ by a, which is the
TD ‘‘heuristic adjustment for nonlinear effects’’.
Both FJ neutral curves (broken and heavy lines) illustrate two interesting issues: First, the sharp

dropping around USG ffi 5 m/s. Second, they both successfully predict the instability threshold; all
the (SW) experimental data points (open square), which are unstable, are outside the predicted
stable region.
The USG ffi 5 m/s limit surprisingly coincides with LH’s experimental observations in a 0.0508 m

i.d. pipeline with a water–air system. They found that

‘‘. . . Transitions from stratified to slug flow for a superficial gas velocity USG < 5 m/s were ob-
served for flows that were not fully developed; i.e. the liquid was caused to flow through the
pipe by hydraulic gradients, as well as the drag of the gas at the interface. For USG > 5 m/s the
transition to slug flow occurred for a stratified layer that had irregular large-amplitude KH
waves on it. The increase in the superficial liquid velocity USL, required to initiate slugging
when USG is increased beyond USG ¼ 5 m/s, can be explained by the presence of KH waves
which cause an increase in the drag and an associated large decrease in hL (Andritsos et al.,
1989).’’

Our experimental data also shows the USG ffi 5 m/s limit. To the right of both FJ curves
(USG > 5 m/s), and at low superficial liquid velocities (USL < 0:01 m/s), there are unstable or (SW)
data points (open squares). This result agrees with the idea of KH theory, which predicts the
instability of an interface, and not necessarily the transition to slug flow (SL, triangles). Another
agreement with LH experimental observations is ‘‘. . . the increase in the superficial liquid velocity,
USL, required to initiate slugging when USG is increased beyond USG ¼ 5 m/s . . .’’ which they
explain by the presence of KH waves and which cause an increase in the drag and an associated
large decrease in hL.
Fig. 8, like Fig. 7, shows that the FJ basic linear approach does not account for nonlinear

effects or ‘‘premature’’ slugging. In Fig. 8, below the FJ broken line, one finds most of the (SL,
triangles) experimental points. However, when FJ critical velocity is multiplied by the TD heu-
ristic correction factor a most of the (SL, triangles) points are above the new curve (the heavy line
identified as FJ� a in Fig. 8). Those (SL) points below the heavy line (solid triangles) can be
interpreted as genuine ‘‘premature’’ slugs, and the result of bifurcation of stability. Moreover, all
those points were obtained before the gas injection configuration was changed from ‘‘Y’’ to ‘‘T’’
(see Fig. 6(b)). The stable points (SS, open circle) were obtained after the injection device
was changed and experiments continued. The stable (SS) point, the only solid circle in Fig. 8, was
obtained with the ‘‘T’’ injection point. However, we must point out that a single liquid slug was
observed one hour and a half after the (USG, USL) condition was set. This test lasted 5 h total, and
after that single slug no more slugs were observed. After this experiment we checked the flow loop
level and found out inclination angles up to Oð10�2) degrees. Once the flow loop was leveled, the
other (SS) experimental points were obtained, for which not a single slug was observed. This result

C. Mata et al. / International Journal of Multiphase Flow 28 (2002) 1249–1268 1265



suggests that another source of ‘‘premature’’ slugs could have been liquid accumulation at some
points in the flow loop.
Fig. 9 compares theory and experiments in the average velocity rather than superficial velocity

plane. Here stable (SS, circles) and unstable (SW, squares) data points were obtained with our
0.0508 m i.d. flow loop for air–oil (lL ¼ 0:480 Pa s) flow. The neutral stability criteria for stratified
flow after the following authors are also presented; TD: stars, BT: þ, FJ: broken line, FJ mul-
tiplied by a or FJ� a: heavy line. The linear FJ and heuristic nonlinear FJ� a criteria separate
stable stratified flow from SW flow.

7. Concluding remarks

1. In this paper we compare results from different theories of the KH instability of stratified
gas–liquid flow with each other, to old data for water–air and to new data, presented here,
on heavy oil (0.480 Pa s).

2. The theories discussed are due to [J], TD, LH, BT and FJ. The computations for heavy oil for
these theories are done in this paper. The comparison of different theories with each other and
the comparison of all theories against data––new and old––has not been done before.

3. The theories make different assumptions and the predicted stability limits differ widely (see
Figs. 7–9).

4. TD, LH and BT carry out analysis for instability to long waves without demonstrating that
short waves lead to the lowest critical value of instability. FJ study the KH instability to all
waves and show that the critical wave is not long and is determined by surface tension.

Fig. 9. Local liquid velocity UL vs. local gas velocity UG for PDVSA-Intevep data from 0.508 m i.d. flow loop with air

and 0.480 Pa s lube oil (same as in Fig. 8). The identified flow patterns are SS (open circles), SW (open squares).

Stratified to non-stratified flow transition theories after different authors are compared; TD: stars, BT: þ, FJ: broken
line, Funada and Joseph multiplied by a (2001) FJ� a: heavy line. Constant void fraction a lines are indicated. Notice

that the curves FJ and FJ� a sharply drop around UG ffi 5 m/s, separating SS data from SW data.
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5. BT give a two-fluid model for the KH instability in which surface tension is included, but they
calculate only for long waves for which surface tension plays no role. In the BT theory the
surface tension term is proportional to k4, whereas in the classical theory and other two fluid
models it is proportional to k3.

6. In TD and BT, boundary conditions are not explicitly enforced on the wall and different ge-
ometries are recognized by specifying the value of the ratio of the area occupied by the gas AG

to the rate of change of AL (area occupied by the liquid) with respect to the liquid holdup hL.
No demonstration of the equivalence of these different geometries is given and it is possibly
not true.

7. TD and FJ neglect the shear stress; LH and BT include them by way of empirical correlations,
which may be chosen to fit data.

8. The viscous normal stress is neglected by TD, LH and BT, whereas it is considered by FJ.
9. FJ carried out analysis using VPF, which predicted that the critical velocity for KH instability

is largely independent of viscosity for large kinematic viscosity vL > vG, but depends strongly
on viscosity when vL < vG. When vL ¼ vG the critical velocity is high and equal to that given
by VPF.

10. TD and BT, in their IKH analysis, neglect viscosity in the stability analysis but need viscosity
for the liquid holdup calculation. When we evaluated the IKH theory, we chose vL ¼ vG which
gives a liquid viscosity lL most consistent with an inviscid analysis.

11. TD constructed a heuristic theory to account for nonlinearity. This theory leads to the mul-
tiplication of critical velocity by the gas fraction a and it is widely considered to give the best
agreement with observed water–air data. We show that the same argument applied to FJ leads
to a slightly better agreement in both the water–air and oil–air cases.

12. Both of the FJ neutral curves (linear and with TD heuristic correction for nonlinear) show a
sharp dropping around USG ffi 5 m/s, and leave outside the SW data points and account for
nonlinear effects. TheUSG ffi 5 m/s limit surprisingly coincides with LH experimental observa-
tions in a 0.0508 m i.d. pipeline with a water–air system.

13. Our new experimental data on heavy oils also respects the USG ffi 5 m/s limit. This result agrees
with the idea that KH theory predicts the instability of an interface, and not necessarily the
transition to slug flow.

14. Another agreement with LH experimental observations is the increase in the superficial liquid
velocity, USL, required to initiate slugging when USG is increased beyond USG ¼ 5 m/s.

15. Recognizing that the TD argument is rather primitive, we explored some ideas about bifurca-
tion theory emphasizing the big difference between subcritical and supercritical bifurcation,
but no calculations are given. The case of ‘‘premature’’ slugging identified by Wallis and Dob-
son (1973), and in the oil–air experiments reported here, explains a subcritical bifurcation.
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